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The Hahn and Meixner polynomials of an imaginary 
argument and some of their applications 
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t Physics Institute, Baku 370143, USSR 
$ Kurchatov institute of Atomic Energy, Moscow 123182, USSR 

Received 1 5  November 1984 

Abstract. The Hahn and Meixner polynomials belonging to the classical orthogonal 
polynomials of a discrete variable are analytically continued in the complex plane both in 
variable and parameter. This leads to the origination of two systems of real polynomials 
orthogonal with respect to a continuous measure. The Meixner polynomials of an imaginary 
argument obtained in this manner turned out to be known in the literature as the Pollaczek 
polynomials. The orthogonality relation for the Hahn polynomials with respect to a 
continuous measure is apparently new. A close connection between the Hahn polynomials 
of an imaginary argument and representations of the Lorentz group SO(3, 1 )  is considered. 

1. Introduction 

Among the special functions of mathematical physics an important place belongs to 
the classical orthogonal polynomials of a discrete variable which are the difference 
analogues of the Jacobi, Laguerre and Hermite polynomials on the uniform and 
non-uniform lattices. Recently (see Nikiforov et a1 1982, Nikiforov and Ouvarov 1983, 
Nikiforov and Uvarov 1983, Nikiforov et a1 1984) a simple approach to the theory of 
these polynomials has been developed which allows us to single out naturally the 
above-mentioned class of special functions, to derive in a simple way all their main 
properties and to carry out their classification. The Hahn, Meixner, Krawtchouk and 
Charlier polynomials (see, for example Bateman and Erdelyi 1953, Szego 1959, 
Nikiforov and Ouvarov 1983, Nikiforov et a1 1984), as well as the polynomials 
introduced by Hahn (1949), Karlin and McGregor (1961), Askey and Wilson (1979) 
and Wilson (1980) with different special considerations, proved to be the particular 
cases of the classical orthogonal polynomials of a discrete variable. 

In the present paper a simple technique is discussed which permits one to include 
in the general theory of classical orthogonal polynomials of a discrete variable some 
more important families. As is well known, the Hahn, Meixner, Krawtchouk and 
Charlier polynomials are orthogonal on a discrete set of points. If we write a discrete 
orthogonality relation for these polynomials in the form of a contour integral using 
Cauchy’s theorem and subsequently open up the contour in the complex plane, then 
in some cases after analytic continuation in the parameter on a line, parallel to the 
imaginary axis, there arises a real system of polynomials orthogonal with respect to a 
continuous measure. It is natural to call such polynomials the classical orthogonal 
polynomials of a discrete variable of the imaginary argument. The transition from the 
discrete orthogonality property of these polynomials to the continuous one is analogous 
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to the well known Sommerfeld- Watson transformation in optics and quantum theory 
of scattering. 

We shall discuss a new orthogonality property of the Hahn and Meixner polynomials 
with respect to a continuous measure. As is demonstrated in 0 2, the Meixner poly- 
nomials of an imaginary argument are the Pollaczek polynomials (Pollaczek 1949a, b, 
1950a, b), traditionally considered as a special case in the theory of orthogonal poly- 
nomials (Bateman and Erdelyi 1953, Szego 1959). In § 3 the orthogonality property 
of the Hahn polynomials in a continuous variable is established which apparently has 
not been encountered in the literature for the general case. 

The classical orthogonal polynomials of a discrete variable are used in various 
problems of theoretical and mathematical physics, group representation theory, compu- 
tational physics and techniques. It is sufficient to mention, for instance, the application 
of these polynomials in the quantum theory of angular momentum or in the SU(2) 
group representation theory. Recently close relationships have been found between gen- 
eralised spherical harmonics for SU(2) and the Krawtchouk polynomials (Koornwinder 
1982), between the Clebsch-Gordan coefficients for SU(2) and the Hahn polynomials 
(Gel'fand et a1 1958, Ryvkin 1959, Meckler 1959, Kirichenko and Stepanovsky 1974, 
Koornwinder 1981, Smorodinsky and Suslov 1982a, Nikiforov and Suslov 1982, 
Nikiforov er al 1983a, b), between Wigner 6j-symbols and the Racah polynomials 
(Wilson 1980, Smorodinsky and Suslov 1982b, Suslov 1983a, Nikiforov et a1 1983a, b). 
From such a viewpoint, the quantum theory of angular momentum becomes even more 
complete and logically consistent. The above results are generalised for the discrete 
positive series of the unitary irreducible representations for the non-compact group 
SU(1, 1 )  (Smirnov er a1 1984). The T coefficients of the method of trees can be 
expressed through the same polynomials (Suslov 1983b). 

In the present work some further applications are also discussed. In § 4 the 
wavefunctions in a quasipotential model of a linear relativistic oscillator (Atakishiyev 
et a1 1980) are expressed through the Pollaczek polynomials (Atakishiyev 1983, 1984). 
In § 5 close connections between the unitary irreducible representations of the Lorentz 
group SO(3, 1 )  and the Hahn polynomials of an imaginary argument (Suslov 1984a) 
are discussed. 

2. The Pollaczek polynomials as the Meixner polynomials of an imaginary argument 

The Meixner polynomials mF@'(  z )  belong to the classical orthogonal polynomials 
of a discrete variable whose properties have been well studied (Bateman and Erdelyi 
1953, Szego 1959, Nikiforov and Ouvarov 1983, Nikiforov er a1 1984). The Meixner 
polynomials may be defined by means of the three-term recurrence relation: 

with the initial conditions m P p ' ) ( z )  = 1 and m?'i*)(Z) = 0. For real values of the 
parameters y > 0 and 0 < p < 1 they satisfy the discrete orthogonality relation 

where p ( k )  = p k ( y ) k / k !  and = T(y+z) /T(y ) .  
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We consider the analytic continuation of the relation (2.2) in the parameter p, 
leading to the polynomials orthogonal with respect to a continuous measure. Using 
Cauchy's theorem the left-hand side of (2.2) may be written as an integral with a 
contour C,, enclosing the positive real axis Re z > 0 (figure l ) ,  namely 

R e  I 

Figure 1. 

where p'(z) = (y),r(-z)(-p) ' .  Using the asymptotic behaviour of the gamma function 
in the complex z plane it is possible to show that on the semicircle z = - y /2+  R eie  
and -7 r /2s  0 s n-/2 for the function ;(z) the estimate 

(2.4) p ' ( z )=O(RY- '  exp{R[cos 0 lnlpl-sin B(arg(-p)*T)])) 

does hold as R + W .  Therefore for Ipl< 1 and larg(-p)l< T the integration contour 
C, in (2.3) can be replaced by the contour C2, on which z = - y/2 + ix, --CO < x < W. 

According to the estimate (2.4) for the function b(z),  when larg(-p)l< n- the integral 
in the relation (2.3) uniformly converges on the contour C2, where 0 = *n-/2, for all 
values of Iplt. Consequently, this integral can be analytically continued in the para- 
meter p to the entire complex p plane with the cut along the positive real axis Re p > 0. 
In particular, the equality (2.3) remains valid for both p =exp(-2icp) and z = 
- y/2 + ix ( y > 0,O < cp < T ) .  If we set (see Atakishiyev 1983, 1984, Suslov 1984a) 

exp(-incp) 
myA,cl)(-A +ix)  p = exp( -2icp) (2.5) 

then (2.1) leads to a three-term recurrence relation with the real coefficients for the 
polynomials P^,(x, c p )  with A > 0 and O <  cp < n-, i.e. they are real for the real values of 
the variable x. As follows from (2.3) and (2.5) the polynomials P^,(x, c p )  satisfy the 
orthogonality relation 

a2 

P^,(x, cp)P^,.(x, cp)p(x) d x  = Sn,,,T(2A + n)/n!  I, 
+ It will be recalled that to prove the regularity of an integral F (  p )  = J,f(z, p )  dz, depending on the 
parameter p, belonging to a domain D of the complex p plane, the uniform convergence of this integral 
with respect to p E D' is required, where D' is any closed subdomain of D (see, for example, Efgrafov 1968). 
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with respect to a continuous measure with the weight? 

1 
2T  

p(x)  =-(2 sin cp)2AjT(A +ix)I2 exp[(2cp - T)x]. (2.7) 

The polynomials P i (x ,  9) were introduced previously by Pollaczek (1949a, b, 
1950a, b) and called the Pollaczek polynomials. We have demonstrated that Pollaczek 
polynomials are the analytic continuations of the Meixner polynomials in the parameter 
P. 

Using the well studied properties of the Meixner polynomials (see, for example, 
Nikiforov et a1 1984) and (2.5), it is easy to obtain the difference equation, Rodrigues' 
formula, etc, forthe Pollaczek polynomials. In particular, the difference equation has the 
form 

[ ( A  - ix)  exp[i(cp+d,)]-(A + ix )  exp[-i(cp+a,)]Pi(x, cp) 

=2i[(n+~)sincp-xcoscp]P",x, cp) 

where d, = d /dx  and exp(ad,)f(x) = f ( x  + a ) .  We would also like to mention the 
formulae for the action of the raising and lowering operators: 

{( n + A + ix) exp( -icp) + ( A  - ix} exp[i(cp + dx)]]Pt(x, cp) = ( n  + l)P",,(x, cp) 

[ n + A  -ix-(A - ix)  exp(id,)]Pi(x, cp)=(2A + n -  1 )  exp(-icp)P:-,(x, cp).  
(2.9) 

3. The Hahn polynomials of an imaginary argument 

Just as in the case of the Pollaczek polynomials we shall introduce the Hahn 
polynomials of an imaginary argument (Suslov 1984a): 

p,(x) =pv.p'(x,  y )  = i-"h$P'(z, N )  (3 .1 )  

where z = $ ( x + y ) - f ( P +  1) and N =  - $ ( a + P ) + i y .  The definition (3.1) deals with 
the Hahn polynomials hv,P)(z,  N ) ,  analytically continued both in variable z and 
parameter N to the complex plane (for their properties see, for instance, Nikiforov et 
a1 1984). 

Taking into account the three-term recurrence relation for the Hahn polynomials 
I I ? ~ ) ( Z ,  N )  and formula (3.1) we find that 

Po(X) = 1, p - , ( x )  = 0. (3.2) 

Therefore the polynomials p!,@)(x,  y )  have the real coefficients for the real values of 
the parameters a, /3 and y. 

t We note the following properties of the function r( z )  (see, for example, Abramowitz and Stegun 1964): 

Iim ( z r ) - ' ' * l r ( ~  +ix)l e x p ( . n ( x ( / 2 ) l ~ - " " ~  = I .  
I; -13 

r*(z) = r(z*) 

The symbol * denotes complex conjugation 
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As in the case of the Pollaczek polynomials, for the Hahn polynomials of an 
imaginary argument it is possible to prove the orthogonality relation with respect to 
a continuous measure. 

Orthogonalityproperfy.  For the real values of the parameters a, p and y (a, p > - 1 )  
the polynomials p p 9 P ' ( x ,  y )  are orthogonal in the infinite interval (-CO, CO) 

with the weight 

(3.3a) 

Proof: Let us calculate the integral of the product of two Hahn polynomials 
h,(z) = hjpJyz, N ) :  

1 
2 ~ i  

I =- 1 h,(z)h,(z)b(z) dz  (3.4) 

where p ( z ) = T ( p + z + l ) T ( z - N + l ) r ( a + N - z ) T ( - z ) ,  over some contour C, which 
separates the poles of the expressions r( p + z + l)T( z - N + 1 ) and r( a + N - z ) r (  - 2 )  

(figure 2 ) .  Using the symmetry properties of the Hahn polynomials (Suslov 1984a) 

hjp,P)(z,  N)=(- l )"hLp+")(N-z-  1, N ) =  h ( - N * a + p + N )  ( 2  - a - N, -a) 

and the representation for these polynomials through the hypergeometric function 
(Nikiforov et a1 1984) 

( - I ) " ( @  + i)nr(N)3F,( -n ,  a + p +  n +  1, -z 
n ! T (  N - n )  p+1,1-N 

hjp,P)(Z, N )  = 

Figure 2. The contour C ( z = t i ( x + y ) - t ( p + I ) , - o c r < x < ~ ~ ) ,  on which the Hahn poly- 
nomials of an imaginary argument p v * B ' ( x ,  y )  are orthogonal, passes between the poles 
of the expressions T ( p + z + l ) T ( z - N + l )  and T ( a + N - Z I T ( - z )  ( N = i y -  
;(a + p )  ; a, p > - 1). 
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we get 

(-m)k(a + p  + m + l)k(-n)k*(a + p  + n +  l ) k s r ( l  - N +  m ) r ( a  + p  + N +  n +  1) 
( a +  l )kk ! (a+  l)k!k'!r(l - N +  k ) r ( a + P +  N +  k'+ 1 )  x c  

k,k'  

x L  1 r(p + z +  1)T(z- N +  k +  l ) T ( a  + N -  z +  k')I'(-z) dz. (3.6) 

For a, p > -1 the Barnes' lemma (see Whittaker and Watson 1927) and the known 
integral representation for the B function allow us to prove the identity 

2ni  

1 1 r (p + z + l ) r (  z - N + k + l ) r ( a  + N - z + k')T( -z)dz 
2ni  

Therefore the formula (3.6) takes the form 

(a + l)m(a + 11, I = ( - l ) T (  1 - N +  m ) T ( a  + p  + N +  n + 1) 
m!n!  

-n, a + p  + n + 1, a + 1 ; (3.8) 

Taking into account the expression for the Jacobi polynomials Pr3"(  s)  through the 
hypergeometric function F ( a ,  p, y ;  z) (see, for instance, Bateman and Erdelyi 1953), 
for the integral (3.4) from (3.8) we find 

= ( - i )m2- (a+p+i ) r (  1 - N +  m ) r (  (Y + p + N + 1 )  

XI-, P' ,"~p ' (s)P~3p'(s)( l  - s ) ' ( l + s ) p  ds. 
I 

(3.9) 

In the formula (3.9) we will choose a contour C in such a way that z =  
$(x+ y )  - f (p  + 1) .  Then according to the equalities (3.1) and (3.9), the orthogonality 
property (3.3) of the Hahn polynomials of an imaginary argument p?sp'(x,  y )  follows 
from the orthogonality of the Jacobi polynomials P F p ' (  s) for a,  p > - 1 .  Besides, the 
formula (3.9) leads to the next value of the square of the polynomials p!,@)(x,  y )  norm: 

+ n + i ) r ( p  + n + i)Ir(;(a + p )  + i y +  n + 1)1' 
d; = (3.10) n ! ( a  + p  +2n + 1)qa  + p  + n + 1) 

In the same way it is possible to introduce the polynomials Askey and Wilson 1982, 

(3.1 1 )  

Suslov 1984a) 

q F ' ( x ,  S ) = p ~ s " ' ( x ,  -is)  =i-"hF")(z,  N )  
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where z = fix - ;( (Y - S + 1) and N = S - (Y, which takes real values for the real para- 
meters a and S and variable x. Using the same considerations mutatis mutandis (the 
location of the poles of the r functions is given in figure 3), we come to the orthogonality 
relation for the polynomials qv’(x,  6 ) :  

qz)(x ,  S)qF’(x,  S)p(x)  dx  = diS,,,, ( a  > -1,161 < ( Y  + 1). (3.12) 

Figure 3. The contour C ( z  = iix -;( a - S + I ) ,  -a- < x < CO), on which the Hahn poly- 
nomials of an imaginary argument q y ’ ( x ,  6)  are orthogonal, passes between the poles of 
the expressions T(a + z +  l )T (z -  N +  1) and T(a + N - z ) T ( - z )  ( N  = 6 - a ,  a > -1, ( S ( c  
a + l ) .  

Here 

2 2 

2 

(3.12a) 

and 

r2(a + n + i ) r ( a  + s + n + i)r((Y - 6 + n i 1) 
n ! ( 2 a  + 2 n +  l ) r ( 2 a  + n +  1 )  

d i  = 

We would also like to mention that the weights for the Hahn polynomials of an 
imaginary argument ( 3 . 3 ~ )  and (3.12a), as well as the weight for the Pollaczek 
polynomials (2.7), satisfy the closedness criterion (see Nikiforov and Ouvarov 1983). 
Therefore these polynomials form the closed orthogonal systems of functions. 

The Hahn polynomials of an imaginary argument ~ v * ~ ) ( x , y )  and qp’(x, 6 )  are 
closely related to the unitary irreducible representations of the Lorentz group SO(3, 1) 
for the principal and complementary series, respectively (see § 5). 

According to the relations (3.1) and (3.11) the polynomials pvSp)(x,  y )  and 
qLU’(x, 6 )  satisfy a difference equation, Rodrigues’ formula, etc, being true for them 
owing to the known properties of the Hahn polynomials h‘,””’(z, N ) .  We note, for 
instance, the symmetry relations: 
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On the other hand, from the orthogonality relations (3.3) and (3.12) it is possible to 
come to the discrete orthogonality property of the corresponding Hahn polynomials 
h‘,“,’’(z, N )  as a result of the analytic continuation. 

Consider an analogue of the Legendre polynomials: the polynomials t ,  (x, y) = 
prT0)(x, y), which is natural to call the Tchebichef polynomials of an imaginary 
argument. Their weight p(x)  and squared norm d i  are equal to 

’(’) = 2(cosh r lx  + cosh r l y )  

It is interesting to note that in  this case the weight p(x)  satisfies along with the difference 
equation the nonlinear differential equation 

n-1 n [(n - k)’+  y2]. 77 TY d ;  = 
(2n + 1) sinh rly  k = O  

p’(x) + ( 2  sinh rlx)p2(x) = 0. 

We also mention the polynomials q!,”(x, a) ,  for which 

(3.13) 

rl 

2(cosh T X  + COS T 6) p ( x )  = 

The Hahn polynomials of an imaginary argument qr’(x, 1/2) and the Pollaczek 
polynomials P‘,“2’(x, r / 2 )  are orthogonal on the interval (-CO, CO) with the same weight 
p ( x )  = constant/cosh rlx. As a consequence of this they are related by the equality 

qjp’(x, 1/2)  = (;),P:”)(X, T /2 ) .  (3.14) 

4. The Pollaczek polynomials in a quasipotential model of the relativistic oscillator 

For the consistent three-dimensional description of a relativistic two-particle system 
in quantum field theory the quasipotential approach has been formulated. Some 
relativistic generalisations of the known exactly solvable problems of quantum 
mechanics have been considered in the framework of this approach (Logunov and 
Tavkhelidze 1963, Kadyshevsky 1968, Kadyshevsky and Mateev 1968). Thus, in the 
papers by Atakishiyev et a1 (1980) and Atakishiyev (1983, 1984) a model of the linear 
oscillator in the relativistic configurational x representation (Kadyshevsky et a1 1968) 
has been studied, which is described by the difference Hamiltonian: 

(4.1) N(x)  = mc2 cosh(iha,)+fmo’x(x+ih) exp(iA8,) 

where A = h/mc is the Compton wavelength, a, = d/dx and exp(ad,)f(x) = f ( x +  a). 
We shall prove further that the square-integrable solutions of the equation 

H(x)$,(x) = &$,(x) (4.2) 

are expressed through the Pollaczek polynomials P,”(x, cp) with the fixed value of the 
parameter cp = r/2. In fact, having separated the factors [ Y( v - l)]-ix’2h and r( Y + 
ix/A 1, Y = $+[$+ (c/Aw)~]”~, which determine the asymptotic behaviour of the 
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wavefunction (cl,(x) at the points x = 0 and x = m, respectively, we represent it in the 
form 

v,,(x) = C,[Y(V- 1)]- '"/2Ar(v+i~/A)f l (x) .  (4.3) 

(4.4) 

The substitution of (4.3) in (4.2) leads to the difference equation for fl(x): 

[(v-ix/A) exp(iAa,)+(v+ix/A) exp(-iAa,)]fl(x) = 2(E,/hw)fl(x). 

Comparison of this equation with (2.8) shows that the square-integrable solutions of 
(4.4) are the polynomials Q(x) = PK(x/A, 7r/2), while the corresponding eigenvalues 
of the Hamiltonian (4.1) are equal to E ,  = hw(n + v), n = 0, I ,  2 , .  . . . The orthonor- 
mality of the wavefunctions 

*,,(XI = C,[v(v- 1)] - ' " '2Ar(v+i~/A)P~(~/A,  7/2) 

C, = 2"[ n ! / z T A ~ (  n + 2 v)]'/' (4.5) 

is the consequence of the continuous orthogonality relation (2.6) for the Pollaczek 
polynomials. 

As is known (Atakishiyev et a1 1980) a dynamical symmetry group for the 
(4.1) is the group SU(1, 1 )  (or isomorphic groups 
whose generators are realised by the difference 

ic 
A Aw 

(4.6) 
X 

K ,  =--*iKOF- exp(-iAd,). 

oscillator with the Hamiltonian 

operators 
SO(2, l )  - SP(2, R )  - w 2 ,  RI),  

1 
KO=- H(x)  

hw 

It is easy to see that their action on the eigenfunctions of the Hamiltonian (4.l), i.e. 

K-(cln(x) = Kn$n-l(x) 
K, = [ n( n + 2 V - 1 )I"' 

K+(cln(x) = K n + l ( c l n + l ( X )  
(4.7) 

follows from the formulae (2.9). The wavefunctions &(x)  (see (4.5)) are the basis 
functions of the infinite-dimensional irreducible2itary representation D'( v )  (discrete 
positive series) of the universal covering group SU( I ,  I ) .  Therefore, the relations (4.5) 
lead to the group-theoretic interpretation for the main properties of the Pollaczek 
polynomials. 

Taking into account the limiting formula for the Pollaczek polynomials (Pollaczek 
1950b), i.e. 

where H,(x) are the Hermite polynomials, it is easy to show from (4.5) that in the 
limit when the velocity of light c tends to infinity, $,(x) coincide with the wavefunctions 
of the non-relativistic linear oscillator. 

5. The Hahn polynomials of an imaginary argument and representations of the 
Lorentz group SO(3,l) 

In the present section we discuss the close relationship between unitary irreducible 
representations of the Lorentz group SO(3, 1) and the Hahn polynomials of an 
imaginary argument introduced above. In this way one manages to state the basic 
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facts from the representation theory of the Lorentz group (Gel’fand et a1 1958, Naimark 
1964) in the form which is close to the well known problem of the coupling of two 
momenta in quantum mechanics. 

Let us consider Minkowski space, i.e. the four-dimensional real pseudo- 
Euclidean space, in which a distance (interval) is determined by the quadratic form 

s z =  xi-  x:- x i -  x,. 2 

All the possible rotations in the three-dimensional space (x l ,  x2, x,) and boosts, i.e. 
the hyperbolic rotations in the planes (xo, x:), (xo, x,) and (xo, x3), form the proper 
Lorentz group SO(3, 1) .  

Let J and K be the infinitesimal operators of rotations and boosts, respectively, 
which satisfy the commutation relations 

where e,,, is the Levi-Civita symbol. 
The transformation 

A = $ ( J + i K )  B = i ( J - i K )  

leads to the commutation relations for two independent angular momenta: 

[A,, A,] = ie,,A 

[A, By]= 0 ( p 7 q , r = l , 2 , 3 ) .  

[ Bp, E, 1 = i e,,, Br 
(5.2) 

Therefore the construction of irreducible representations of the group SO(3, 1 )  is closely 
connected with the problem of the coupling of two ‘complex conjugate’ momenta A 
and B into one ‘real’ vector J = A + B. For the unitary representations we have: 

J’= J K’= K A+ = B. 

(The symbol L’ denotes the Hermitian conjugation of an  operator L.) 
According to the commutation rules (5.2) in a space of irreducible representation 

of the group SO(3, 1) it is possible to construct the basis @’,,,,, on which the operators 
A, = A, * iA2, A3 and B, = B1 i iB2, B3 act by the formulae 

A*@mlm,=[(j, * m l ) ( j l  * M I *  1 ) 1 1 ’ 2 @ m l s ~ , m 2  

B * @ m i m , = [ ( j 2 +  m2)(j2* m,+ 1)I1’*@m,,m2*1 

A3@mlm2= m l @ m , m ,  

B 3 @ m l m 2  = m2@mlm2. 
( 5 . 3 )  

In the case of the Lorentz group the constantsj , , j , ,  m,,  m, take some complex values. 
Since A+ = B, then j T  = j 2  and mT = m2. Vectors are the eigenvectors of two 
Hermitian operators J3 = A,+ B3 and K3  = i-’(A3- B,): 

(5.4) 

and they correspond to the real eigenvalues m = m I  + m, and A = i-’(m, - m2).  
Therefore 

J 3 @ m , m 2 =  m @ m l m 2  K3@ mi m2 = A @ m,  m2 

m1 = f ( m + i h )  m2 = $( m - iA). (5.5) 

t The Lorentz group SO(3, 1) is non-compact and its irreducible representations are infinite-dimensional. 
The correct definition of representations for this case can be found, for example, in Naimark (1964). 
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For the basis xAm = QmIm,, where the quantum numbers are connected by the formula 
(5.5), the orthogonality and normalisation relations are valid: 

( X A m l X A ’ m ’ )  = 6 m m ’ 6 ( A  - A ’ ) *  (5.6) 

Here S ( [ )  is the Dirac 6 function. 
On the other hand, the infinitesimal operators J satisfy the commutation relations 

of the angular momentum. Therefore in a space of irreducible representation there 
exists the basis qJmr on which the operators J ,  = J ,  *iJ2 and J ,  act by the formulae 

~ + q ~ ~  = [ ( j  7 m ) ( j  * m + 1 ) ]”2qJ,m*1 J3(cllm = in$,m. (5.7) 

Here j is an integer or half-integer positive number and m = -j, - j  + I ,  . . . , j  - 1,j. 
From the infinitesimal point of view the study of irreducible representations of the 

Lorentz group SO(3, 1) is reduced to defining the form of the operators K, = K ,  *iK2 
and K, in the basis TI,,, (Gel’fand et a1 1958, Naimark 1964). 

To find out how the operators K, and K, act on the basis VJmr we expand the 
vector qlm over the eigenfunctions of the operator K , :  

with m, and m2 defined in (5.5), and then determine the coefficients of the expansion 
(5.8). Acting by the operators J ,  = A ,  + B ,  on both sides of the equality (5.8) and 
taking into account (5 .7) ,  (5.3) and (5.6), we obtain the recurrence relations for these 
coefficients, which are well known in the theory of angular momenta: 

(5.9) 

(5.10) 

and 

a;’ =sin .rr(j l  - m, + 1 )  a ~ I = s i n  . r r ( j2+m2+1)  

leads to simple difference-recurrence formulae for the functions uTm( m , ) :  

U l m  + 1 ( m , )  = VU]>( mi ) U J y f 7 - l ( m l )  = (5.1 1) 

where Af(x) = f ( x +  1 )  -f(x) and Vf(x) = f ( x )  - f ( x  - 1 ) .  From (5.1 1) exactly in the 
same manner as in deducing the general expression for the Clebsch-Gordan coefficients 
(Nikiforov et al 1984) we get 

(5.12) 
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Here A is a constant, determined by the normalisation condition 
cc 

II+jj112= 1 dAl(m,m21jj)12= 1 .  (5.13) 

Using the Barnes' lemma (Whittaker and Watson 1927) it is easy to check that for the 
unitary irreducible representations of the Lorentz group SO(3, 1) the condition (5.13) 
is satisfied?: 

-cc 

( a )  in the case of the principal series, when 

j, = j T  = & ( p  - 1 + i y )  j=lj l+j2+ 11, b , + j 2 + 1 \ +  1 , .  . . 
( p  is an integer or half-integer and y is an arbitrary real number) ; 

(b)  for the complementary series, when 

j = j; = +( 6 - 1) j= j , - j , , j , - j2+1,  . . .  
( 6  is a real number and 161 < 1) .  For both cases 

For our further consideration it is convenient to put A = iJ-"IAI. 
By analogy with the theory of angular momenta coefficients of the expansion (5.8) 

are called 'complexificated Clebsch-Gordan coefficients' (Smorodinsky and Shepelev 
1971). 

Using the Rodrigues' formula for the Hahn polynomials (see, for example, Nikiforov 
eta1 1984), in accordance with the relations (3.1), (3.1 1 )  and (5.12), the complexificated 
Clebsch-Gordan coefficients can be expressed through the Hahn polynomials of an 
imaginary argument. For the principal series we have 

(5.15) 

where p ( A )  and d, are the weight and norm of the polynomials p p 9 p ' ( x ,  y )  (see § 3). 
In  the case of the complementary series 

(5.16) 

In the formulae (5.15) and (5.16) there appears the factor 

p =  1. 
sin T (  j2 - m2 + 1) 
sin ~ ( j ,  - m I  + 1 )  f = (  

Up to this factor the complexificated Clebsch-Gordan coefficients are real. 
The formulae (5.8), (5.15) and (5.16) allow us to derive the matrix elements of the 

operators K ,  and K 3  in the basis qlm, thus exploiting the properties of the Hahn 
polynomials of an imaginary argument studied above. For instance, using the three- 
term recurrence relation (3.2) we obtain 

(5.17) K 3 q j m  = a ] m q , - l , m  + b j m q j m  + a j + l . m q j + l , m  

t We note that the usually used notations (Gel'fand et a/ 1958) are connected with ours in the following 
way: 1, = F,  I ,  = iy, I = j ,  [,, = i'-"'Y,,. 
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where for the principal series 

(5.18) 

In the case of the complementary series in the formulae (5.17) and (5.18) it is necessary 
to set p = 0 and y = -i6. 

Using (5.7), (5.17) and the commutation relations (5.1) it is easy to determine the 
action of the operators K ,  on the basis q,,,,. Thus, the action of the infinitesimal 
operators J and K on the basis q,,,, of the irreducible representation of the Lorentz 
group SO(3, 1 )  is obtained with the help of the previously studied properties of the 
Hahn polynomials of an imaginary argument. Conversely, from the formulae, deter- 
mining the action of the operators J and K on the basis ",,,,, the group-theoretic 
interpretation for the main properties of the Hahn polynomials of an imaginary 
argument arise naturally. 

The reasonings carried out by us allow to obtain simple expressions for the 
boost matrix elements of the Lorentz group SO(3, 1): 

In the case of the principal series ( p ,  y )  the formulae (5.8) and (5.15) lead to the 
following integral representation (Smorodinsky and Shepelev 197 1, Suslov 1982, 
1984a): 

(5.19) 

where p,-,,,(A) = d;!,p:?'",3"'p)(A, y ) .  An analogous integral representation for the 
boost matrix in the case of the complementary series is easily derived from (5.8) and 
(5.16). 

The integral representation (5.19) allows us to study the function djy?$)(t) on the 
basis of the known properties of the Hahn polynomials of an imaginary argument. In 
particular, owing to the orthogonality property (3.3) we get 

In conclusion we note that since the Lorentz group SO(3, 1) is a dynamical symmetry 
group for the non-relativistic Coulomb problem in the case of a continuous spectrum, 
in this problem the Hahn polynomials of an imaginary argument also arise (Suslov 
1984b). 
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